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Monotonicity in Romberg Quadrature 

By Torsten Strom 

Abstract. Monotonicity of one or more derivatives of the integrand is shown to imply a 
corresponding property of the approximating Romberg scheme. This is of importance in 
connection with error estimation by majorants [6]. The monotonicity properties are derived 
from an elementary study of the kernel functions involved. A possible explanation is given 
of the monotonicity which frequently occurs in applications where nothing is presupposed 
about the signs of derivatives of the integrand. Finally, a nonlinear addition to Havie's 
scheme is suggested. 

Following Bauer, Rutishauser, and Stiefel [1] (B.R.S.) and Havie [2] we denote 
by T'k' and U'k) the approximations to fl f(x) dx by the trapezoidal and the rectangu- 
lar rules with step sizes 2-k, k = 0, 1, . . Repeated Richardson extrapolation leads 
to the ordinary and modified Romberg schemes T(k) and U"', satisfying 

(1) Tm = Tp(nti' + (T(*'k - T I1)/(4m - 1), 

(2) Urn T - Tm 

We may form an aggregate table illustrated in Fig. 1. 

T(?) 
T(') T?0) 

(2) T(1) * T0 T1 

* (0) 

(1) 

U0? 

(0)~ ~~~T0 

UO0 

FIGURE 1 

Havie [2] suggested the approximation of fJ f(x) dx by 2(Tmk) + U('-) with the 
error estimate 2 IT()- U(k-Cl) . Str6m [5] proved this inclusion to be strict if f (2m+2)(X) 
is of definite sign in (0, 1) and extended this restricted result to "majorizable" func- 
tions. In essence, f is "majorizable" if F is known such that (F 4: f)(2m+2)(x) both 

Received January 29, 1971, revised January 3, 1972. 
AMS 1970 suibject classifications. Primary 65D30; Secondary 41A55. 
Key words and phrases. Romberg, qLladrature. 

Copyright ? 1972, American Mathematical Society 

461 



462 TORSTEN STROM 

are of (the same) definite sign in (0, 1) (Strom [6]). Then the inclusion is again valid 
if the error estimnate is computed from the table associated with f F(x) dx. It is hence of 
interest to know how a monotonicity property such as ft2m'+"(x) ? 0 propagates 
to the Romberg tables. In a number of practical cases, where f(2rm+ 2'(x) in general 
is not of definite sign, monotonicity has, nevertheless, been observed in the Romberg 
schemes. The reasons for this will also become apparent. Finally, it is of general 
interest to approximate U.(', the missing "partner" of T'?'. 

Definition 1. A function 4) is of class E ("Even") if 
(i) 4?(x) is nonnegative in (0, 1) and nondecreasing in (0, 2), 

(ii) d1(0) = 4(1) = 0, 
(iii) ?(x) = 4(1-x), 

(iv) ?D(X) = 4(x + 1). 
This notation was borrowed from Lyness [4]. 

Definition 2. Let i1, be a given function, i,b(x + 1) = A,1(x). Furthermore, let 

Kk = 1/(4k-l- 1), k 2, 3, , and define 1/2, 413 .* ., through 

(3) -k Kk(4k-1(2x) Vk-JX)), 

4V(?) = 41JO = O, 

The sequence 41, ,6', , denoted by i,, will be called a R(ornberg)-sequence (gen- 
erated by i11). Note that each 412 has period 1 and that 41k(0) = 0 for k ? 2. An 
R-sequence with all its members of class E is called an ER-sequence. 

An argument by B.R.S. may be stated as a useful lemma. 
LEMMA 1. An R-seqiuence generated by a finction of class E is an ER-sequence. 
This lemma is fundamental to the subsequent results. If the first member of an 

ER-sequence is nonnegative, so are all subsequent members. 
We also need a more obvious result for later reference. 
LEMMA 2. Any finiite linear coinbination of R-seqluelices is ani R-sequence. If 

I li(x) I i=,.form an R-sequence and q is a nonniegative integer, then 4- 1 q QPk(2qx) I kI 

form an R-sequence. 
Now 

T(k) + 4-(m+)k f bm+(2 kX)f(2m+2) (x) dx 

(4) f f(x) dx 

U ( 
k - I 

4-(m1)((k-1) f Cm+ 1(2k X)f (x) dx 

where b, is an ER-sequence (B.R.S.). Hence relation (2) and Lemma 2 imply that cl is 
an R-sequence and, since b,(x) = x(I - x)/2, 0 < x < 1, it follows that 

C,(X) =X2/2, 0 < X 

- (1 -4x)-/2, 2 < 1= 

and also, through Lemma 1, that cl is an ER-sequence (Strom [5]). Havie [3] dis- 
cusses b1 and cl extensively. Now let 
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) T I T(k) T(k-1) 
(5) VTm m m T 

VUm() u(k) u(kI 1) 

Urn - U 

Then our first results may easily be summarized. 
THEOREM 1. Let f (2m' II(x) ? 0. Then 

(i) V Tk) < 0 

(i)V UMM > O 

(iii) Tm +1 < T 
(iV) U.(k+ 11) > U (k) 

(v) V T'*k+ 
1 

/VT'(k) 
< I 

Af, in addition, f(2m+4)(x) > 0, then 

(vi) 1/4+ < VTAk 1/VTk). 

Before we outline a proof we note that if all the even derivatives of the integrand 
are nonnegative (e.g., the integrand is an absolutely or completely monotonic function) 
then there is monotonicity column-wise ((i) and (ii)) and row-wise ((iii) and (iv)) in 
the scheme. Hence the best error approximation with absolutely monotonic majorants 
(Strom [5], [6]) appears from a "complete" extrapolation. Also the results (i)-(v) of 
Theorem 1, being "asymptotically true" in very general cases, in practice often hold 
for very moderate values of k. 

Proof of Theorem 1. First note that once (i) and (ii) have been established the 
other propositions follow as simple algebraic consequences of formulas (1), (2) and 
(5). The details are omitted. As VT'*' = U=k-1) - T'k), (i) is an immediate conse- 
quence of (4) and the fact that b, and cl are ER-sequences. To prove (ii) we note that 
V U~'*1 by definition is a linear combination of 

T.'s 
and hence that its kernel 

functions form an R-sequence (Lemma 2). We find immediately that 

V U(k-1) = 4-(k-2) (m+1) dm+1(2 k2X)f (2m+2)(X) dx 

where 

dr +I(x) = 2- 16-(b+l)b +I(4x) - 4(m+1) . 3 bm,1(2x) + brn+i(x). 

In particular, 

d, (x) = 0, x E (0, 41s 

= 8(4X- 1) 4XE3(O 2)' 

This together with the fact that b, is of class E shows that d1 is of class E and hence 
that d, is an ER-sequence (Lemma 1). This proves (ii). The definite signs of all oc- 
curring kernels also indicates that results like (i)-(v) are to be expected asymptotically 
in k if only f (2,+ 1)(1) f (2m+ 1)(0). Q.E.D. 

Turning again to Fig. 1 we note that there is no natural "partner" of T''0 which, 
however, often is the best approximation. Let, in general, 

(k-l) V U11/V Um2 and (k) V T(p/VT,k-1 

If we know VU1'*1) we may often approximate U.' by the formula 
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This follows from the relation 

m = am (1 - 2a+ )/(I - 2a 

where, in general, a k and a(k+l) are small ( 1/4'+ ) or at least approximately equal. 
(Compare also Theorem 1, props. (v) and (vi).) From (6) we thus find 

VT(k) (-) 
U?k) 

C (k) = Ur(nk + V1) V Um 

If L7' is added to a column and then used for further extrapolations just as U'*) 
would have been, we find an approximation to the missing element U,'?. Fig. 2 
illustrates this; the arrows and * indicate the additional extrapolations and elements. 

0() 

1) ( 0) 
T3(?2 TJ_4 

p-$2 T_21 Tp0 

2(1) (0) 

U(?) 

FIGURE 2 

The rule was tried on a few examples and was successful when Havie's method was. 
The error committed is generally very small. One may ask when the rule is correct 
in a strict sense. In a case where f(2m+2)(X) > 0 we infer from Theorem 1 (ii) that 

Um = Um inU 

would imply that Ct(k) is a completely correct substitute for U.) in the sense of the 
inclusion of -f f(x) dx. This is equivalent to a"'+1) < at(k) which may be shown to 
hold asymptotically. 

THEOREM 2. Iff ')(1) > f ')(O)for i = 2tn + 1, 2m +13, tlhen, for k sufficiently 
large, 

V Tm 1V TM(k-1) < (V TM(k) )2 

Proof. The Euler-Maclaurin expansion states that 

r1 N 
(8) = (x) dx + E a(m)4-ik + (4k) 

i=m+1 

where 

ai = a, (4 1)/(4 1), 

(0) = (_l)i+l I(B2-il u0(;i-l)ml - f(2i-1)(0)), 

B2i are Bernoulli numbers. Hence 

sign a, 
" 

(-1)" sign(.f (1) f- (u)t, 
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i.e. in particular 

(9) sign a(+2 = -sign a(+' = -1. 

From (8) follows 
N 

(10) VT~k = a(m)4-ik(l - 4$) + o(4-Nk). 
i-m+1 

We now define 

bI'k(t) = V T,'- 2tV T k) + V T7(k-1 

For k sufficiently large, the first term in (10) predominates. Hence, in view of (9), 

(11) Fk(0) = V Tmk' < 0 

Also 
AT 

4tk (4) = a (m) 4 ik(1 - 4?)4-i + o(4-Nk) 
i-m +2 

Hence for k sufficiently large, sign 4k(4n+) = sign a +2 by (9), i.e. -I4k(4"1) 
> 0. This, together with (11), proves that 4sk(t) = 0 has two real roots for k sufficiently 
large showing that its discriminant must be nonnegative which precisely gives the 
required relation. Q.E.D. 

Unfortunately the nonlinearity prevents the rule from being used in a strict 
majorant application and it is thus only proposed as a complement to Havie's method. 
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